

II Semester M.Sc. Degree Examination, June/July 2018 (CBCS Scheme) CHEMISTRY C-201 – Inorganic Chemistry – II

Time: 3 Hours Max: Marks: 70

Instructions: Answer question number 1 and any five of the remaining.

1. Answer any ten of the following:

(2×10=20)

- a) For the formation of complex [NI(en)₃]²¹ (en = ethylene diamine), logK₁, logK₂ and logK₃ are 7.52, 4.83 and 3.10 respectively. Calculate overall stability constant.
- b) What are the factors that favour high coordination number in complexes?
- c) Define 'stereochemical nonrigidity'. Name the technique used for its detection.
- d) Distinguish between thermodynamic and kinetic stability of metal complexes.
 - e) How is the presence of hydride detected in metal hydridocarbonyl complexes?
- f) Define 'self assembly' in supramolecules. What are the types of interactions present in them?
- g) Derive the ground state term symbols for Ni21.
 - h) Deduce the total number of microstates for V2- and Mn2+ lons.
 - i) What is spincrossover?
 - Calculate the spin only magnetic moments of the following complexes
 - I) K,Fe(CN),
- ii) HgCo(SCN),
- iii) [Co(NH₃)₆]Cl₃ and
- Iv) K[Cr(C,O,),(OH,),]
- k) Name the type of transitions responsible for the following reactions :
 - i) PtCl2 hv -PtCl2 + Cl + -Cl
 - ii) Co(NH₃)₅NCS² hv → [Co(NH₄)₅]² + NCS
- (f) What is Kasha's rule ?

- a) Describe the determination of stability of metal complex by polarographic method.
 - b) What are chelate and macrocyclic effects ? Explain with examples.
 - c) What are the ways of O₂ binding to the metal? Give one example for each. (4+3+3=10)
- a) Write the structures of Fe₀(CO)₁₂ and Ni(CO)₄. Explain the metal carbonyl bonding in them.
 - b) Why the complex M(Pεt₃)₃(CO)₃ exhibits v_{co} at 2090 and 2055 cm⁻¹ where as M(PF₃)₃ (CO)₃ at 1937 and 1847 cm⁻¹? Out of there two phosphines, which one is more π-barbonding ligand?
 - c) With neat sketches, describe the d orbital splitting in tetrahedral and squareplanar crystal field. (4+3+3=10)
- 4. a) Construct the molecular orbital diagram of [Co(NH_a)_e]**. Explain its sallent features.
 - b) What are the factors that affect CFSE 3 Calculate CFSE of $[Co(NH_a)_e]^{3+}$ complex whose $\Delta_p = 23000$ cm⁻¹ and P = 21000 cm⁻¹.
 - c) What are dynamic and static Jahn Teller distortions encountered in metal complexes? Give one example for each type. (4+3+3=10)
- 5. a) How do CFT account for the magnetic properties and colour of the metal complexes?
 - b) Give any two experimental evidences for metal ligand covalency in complexes.
 - c) What are CT transitions? Describe the types of such transitions encountered in metal complexes. (4+3+3=10)
 - 6. a) Of the three Racah parameters, which determine the energy differences between (i) ³P and ³F and (ii) ³P and ¹P state arising from the same atom?
 - b) Explain the salient features of Tanabe sugano diagrams.
 - c) An octahedral cobalt (II) complex exhibits d-d transitions at 7150, 15200 and 19200 cm⁻¹. Assign these bands and calculate Nephelauxetic ratio.
 (B for Co²⁺ ion = 971 cm⁻¹).
 (4+3+3=10)

- Describe VSM method of determining magnetic susceptibility of metal complexes.
 - b) Explain the effect of temperature on the susceptibility of different magnetic materials.
 - c) What is spin orbit coupling ? In which of the following configurations of tetrahedral complexes spin orbit coupling is expected ? d², d³, d⁴ and d⁵. (4+3+3=10)
- 8. a) Write briefly on photoredox reactions of transition metal complexes.
 - b) What are Adamson's rules? What are its limitations?
 - c) Predict the products of the following reactions:
 - i) Ir H, (diphos); hv ? ?
 - ii) $[Cr(NH_3)_6]^{9+} + H_2O \xrightarrow{hv} + 7 + 7$
 - iii) $[Cr (en)_3]^{3n} + H_2O \xrightarrow{hv} ?$

(4+3+3=10)